Decomposition of Intermolecular Interactions in the Crystal Structure of Some Diacetyl Platinum(II) Complexes: Combined Hirshfeld, AIM, and NBO Analyses.

نویسندگان

  • Saied M Soliman
  • Assem Barakat
چکیده

Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (|V(r)|/G(r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E(2), of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of dxy, dxz, and s atomic orbitals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br): An ab initio, DFT, NBO and AIM study

The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hy...

متن کامل

Theoretical Investigation of Interaction between 5-Fluorouracil Anticancer Drug with Various Nitrosamine Compounds

We present detailed theoretical studies of the H-bonded complexes formed from interaction between 5-fluorouracil and various six-membered cyclic nitrosamine compounds. In this study, an investigation on intermolecular interactions in X-NU (X = CH2, SiH2,BH, AlH, NH, PH, O and S) complexes is carried out using density functional theory. The calculations are conducted on B3L...

متن کامل

DFT study of the intermolecular interaction of 3,4-dinitropyrazole (DNP) and H2O

In the present work, the sensitivity to the moisture (hygroscopisity) is studied for 3,4-dinitropyrazole (DNP) as a famous energetic molecule. All of the DNP-H2O complex systems (1-3) as well as individual molecules were optimized and bond lengths, bond angles, dihedral angles, charge transfer and stability via NBO analysis, corrected interaction energies with ZPE + BSSE and hydrogen bonds anal...

متن کامل

Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand

The synthesis, single crystal X-ray diffraction (SC-XRD) characterization and Hirshfeld topology analysis of molecular packing of the coordination polymer [Ag2L(H2O)2(ClO4)2]n, where L = 2,4,6-trimorpholino-1,3,5-triazine were discussed. The asymmetric unit comprises one Ag2L(H2O)2(ClO4)2 unit. The coordination geometries around the two silver atoms are different where Ag(1) is hexa-coordinated...

متن کامل

Two and Three-Body Interactions between CO, H2O, and HClO4

Intermolecular interactions of different configurations in the HOClO3···CO and HOClO3···H2O dyad and CO···HOClO3···H2O triad systems have been studied at MP2/6-311++G(2d,2p) computational level. Molecular geometries, binding energies, cooperative energies, many-body interaction energies, and Energy Decomposition Analysis (EDA) were eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2016